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Abstract
We investigate two-loop higher order binding corrections to the fine structure,
which contribute to the spin-dependent part of the Lamb shift. Our calculation
focuses on the so-called ‘two-loop self-energy’ involving two virtual closed
photon loops. For bound states, this correction has proved to be notoriously
difficult to evaluate. The calculation of the binding corrections to the bound-
state two-loop self-energy is simplified by a separate treatment of hard and
soft virtual photons. The two photon-energy scales are matched at the end
of the calculation. We explain the significance of the mathematical methods
employed in the calculation in a more general context, and present results
for the fine-structure difference of the two-loop self-energy through the order
ofα8.

PACS numbers: 31.15.−p, 12.20.Ds, 31.30Jv, 32.10.Fn

1. Introduction

Ultra-precise measurements in atomic systems represent today one of the most stringent
available tests of fundamental quantum theories and a means for the determination of
fundamental physical constants with unprecedented accuracy [1]. The theoretical description
of the bound states at a level of accuracy which matches the current experimental precision,
which has reached 1.8 parts in 1014 and whose accuracy is to be improved in the near future
[2], demands a thorough understanding of the bound state including—among other effects—
the relativistic, one-loop, two-loop and higher-order radiative, recoil, radiative-recoil and
nuclear-size corrections [3, 4].

We focus here on radiative corrections, which can be described—for atomic systems
with low nuclear charge number—by a nonanalytic expansion in powers of the three
parameters (i) α (the fine-structure constant), (ii) the product Zα (Z is the nuclear charge
number) and (iii) the logarithm ln[(Zα)−2]. The expansion in powers of α, which is
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Figure 1. Feynman diagrams representing the two-photon electron self-energy. The double line
denotes the bound electron propagator. The arrow of time is from right to left.

the perturbation theory parameter in quantum electrodynamics (QED), corresponds to the
number of loops in the diagrams. The bound-state effects are taken into account by the
expansions in the two latter parameters. Higher order terms in the expansions in powers
of Zα and ln[(Zα)−2] are referred to as the ‘binding corrections’. One of the historically
most problematic sets of Feynman diagrams in the treatment of the Lamb shift for atomic
systems has been the radiative correction due to two closed virtual-photon loops shown in
figure 1.

Let us recall at this point that even the evaluation of higher order binding corrections
to the one-loop self-energy, which a priori should represent a less involved calculational
challenge, has represented a problem for analytic evaluations for over three decades [5–9].
The energy shifts of the bound states due to the radiative corrections are conveniently expressed
by expansion coefficients corresponding to the powers of Zα and ln[(Zα)−2]; the naming
convention is that the power of Zα and the power of the logarithm are indicated as indices
to the analytic coefficients (see also equation (1)) below. Because the expansion in both the
one-loop and two-loop cases starts with the fourth power ofZα, the non-vanishing coefficients
carry indices Akl and Bkl for the one- and two-loop cases, respectively (with k � 4—see [3]
for a comprehensive review).

Logarithmic corrections with l � 1 can sometimes be inferred separately in a much
simplified approach, e.g. by considering infrared divergent contributions to electron form
factors. By contrast, the higher order non-logarithmic coefficients represent a considerable
calculational challenge. Realistically, i.e. with the help of current computer algebra systems
[10] 4, one can hope to evaluate non-logarithmic coefficients of sixth order in Zα. Complete
results for the one-loop higher order correctionA60 for S and P states have only been available
recently [8, 11, 12]. Calculational difficulties have until now precluded a successful evaluation
of the corresponding coefficient B60 for the two-loop effect. The groundwork for the evaluation
of B60 was laid in [13]. Here, we are concerned with the evaluation of the fine-structure
differences of the logarithmic and non-logarithmic coefficients B6L (where L = 0, 1, 2), i.e.
with the nP3/2–nP1/2 difference of these coefficients.

4 Certain commercial equipment, instruments or materials are identified in this paper to foster understanding. Such
identification does not imply recommendation or endorsement by the National Institute of Standards and Technology,
nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
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Using natural Gaussian units (h̄ = c = ε0 = 1), as is customary for the current type of
calculation, we write the two-photon self-energy in the Zα-expansion for P states in terms of
B-coefficients as

�ESE =
(α
π

)2
(Zα)4

m

n3

[
B40 + (Zα)2

[
B62 ln2(Zα)−2 + B61 ln(Zα)−2 + B60

]
+ R

]
(1)

where the remainder R is of order o(Zα)3. Relevant Feynman diagrams are shown in figure 1.
Here, m denotes the electron mass (we write equation (1) in the non-recoil limit, i.e. for

an infinite nuclear mass). The double logarithmic B62-coefficient is spin-independent, so that
we have �fsB62 = 0. In this paper, we evaluate the fine-structure differences

�fsB61 = B61
(
nP3/2

) − B61
(
nP1/2

)
�fsB60 = B60

(
nP3/2

) − B60
(
nP1/2

)
. (2)

Throughout the paper, we will follow the convention that �fsX ≡ X(nP3/2) − X(nP1/2)

denotes the ‘fine-structure part’ of a given quantity X. For �fsB61 and �fsB60, we provide
complete results. It is perhaps worth noting that two-loop self-energy effects for bound
states have represented a considerable challenge for theoretical evaluations. Our investigation
represents a continuation of the previous study on the two-loop problem (see e.g. [13–16]). It
is probably a triviality to express that technical difficulties in the calculation and its description
in the following sections of the paper cannot be avoided.

For the description of the self-energy radiative effects, mediated by hard virtual photons,
we use the modified Dirac Hamiltonian

H
(m)
D = α · [p − eF1(�)A] + βm + eF1(�)φ + F2(�)

e

2m
(iγ · E − βσ · B) (3)

which approximately describes an electron subject to an external scalar potential φ ≡ φ(r) and
an external vector potential A ≡ A(r). This modified Hamiltonian is still local in coordinate
space. The Dirac matrices in (3) are to be understood in the standard (Dirac) representation
[17] (in the following, we will also use the non-covariant notation β ≡ γ 0 and αi ≡ γ 0γ i).

The argument� of the electron form factors F1 and F2 in equation (3) is to be interpreted
as a Laplacian operator acting on all quantities to the right (but not on the wavefunction of the
bound electron in evaluating H(m)

D |ψ〉). In momentum space, the action of the Hamiltonian
H
(m)
D is described by the convolution

[
H
(m)
D ψ

]
(p′) = ∫

d3p/(2π)3H(m)
D (p′ − p)ψ(p).

The form factors—in momentum space—assume arguments according to the replacement
� → −q2 ≡ −(p′ − p)2. In equation (3), radiative corrections are taken into account in
the sense of an effective theory via the inclusion of the on-shell form factors F1 and F2.
Although the bound electron is not an on-shell particle, the modified Hamiltonian (3) can still
approximately account for significant radiative systems with low nuclear charge numberZ. Of
course, the Hamiltonian (3) cannot offer a complete description of the bound electron. Recoil
effects cannot be described by a one-particle equation in principle, and vacuum-polarization
effects are not contained in equation (3). However, the effective description of self-energy
radiative corrections mediated by hard virtual photons given by equation (3) will turn out to
be useful in the context of the current investigation.

Both the form factors F1 and F2 entering in equation (3) are infrared divergent, but this
divergence is cut off in a natural way at the atomic binding energy scale (Zα)2m. The fact
that on-shell form factors can describe radiative corrections to the fine structure—mediated
by high-energy virtual photons—has been demonstrated explicitly in [18]. The modified
Dirac Hamiltonian (3) and the associated modified Dirac equation have been introduced—in
the one-loop approximation—in chapter 7 of [17] (see e.g. equations (77) and (103) of [17]
(chapter 7)). The low-energy part of the calculation is carried out using nonrelativistic
approximations in the spirit of the simplified treatment introduced in the previous one-
and two-loop calculations [8, 11–13, 19]. This approach was inspired, in part, by various
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attempts to formulate simplified low-energy (nonrelativistic) approximations to quantum
electrodynamics (‘NRQED’), see e.g. [20, 21]. Both the high-energy and the low-energy
contributions are matched at the separation scale ε whose role in the calculation is illustrated
by the mathematical model example discussed in appendix A.

In a two-loop calculation, either of the two virtual photons may have a high or low energy
as compared to the separation scale ε. A priori, this necessitates [13] a separation of the
calculation into three different contributions: (i) both photon energies large, (ii) one photon
with a large and one with a small energy and (iii) both photons with small energies. For
the particular problem at hand (the fine-structure differences of B61 and B60), we are in the
fortunate position that effects caused by hard virtual photons (i) are described by the modified
Dirac Hamiltonian (3), whereas the low-energy part discussed in section 4 below comprises
both remaining contributions (ii) and (iii).

This paper is organized as follows: two-loop form factors entering in equation (3) are
analysed in section 2. The calculation is split into two parts: the high-energy part discussed in
section 3 and the low-energy part, which is treated along ideas introduced in [21] in section 4.
Results and conclusions are left to section 5.

2. Two-loop form factors

In order to analyse the modified Dirac Hamiltonian (3) through two-loop order, we first have
to investigate certain expansion coefficients of the electronic F1 and F2 form factors which
are thoroughly discussed in the seminal papers [22, 23]. For the momentum transfer q2 which
is the argument of the two functions F1 ≡ F1(q

2) and F2 ≡ F2(q
2), we use the convention

q2 = qµq
µ = (q0)2 − q2. The variable t in [22, 23] is given as t = q2. When we evaluate

radiative corrections to the binding Coulomb field which is mediated by spacelike virtual
photons, we have q2 = −q2 because q0 = 0. We use the conventions (see equation (1.2) in
[22]):

F1(t) = 1 +
∞∑
n=1

(α
π

)n
F
(2n)
1 (t) F2(t) =

∞∑
n=1

(α
π

)n
F
(2n)
2 (t). (4)

One- and two-loop effects are denoted by upper indices 2 and 4, respectively. This notation
is motivated by the observation that two-loop effects are of fourth order in the quantum
electrodynamic interaction Lagrangian −eψ̄γ µAµψ (in the Furry picture, which is used
for the description of bound states, the Coulomb interaction is taken out of the interaction
Lagrangian).

There are two different points of view regarding the choice of diagrams to be included in
the two-loop form factors, depending on whether the self-energy vacuum polarization diagram
of figure 2 is included in the calculation or not. We will discuss both cases and give results
with and without the diagram shown in figure 2 taken into account.

First, we discuss the results obtained for F1 including the combined self-energy vacuum
polarization diagram. In this case, the known results for the slopes F ′

1(0) and F2(0), through
the two-loop order, read as follows. From equation (1.11) of [22], we have

m2F ′
1(0) = α

π

[
−1

3
ln

(
λ

m

)
− 1

8

]
+

(α
π

)2
[
−4819

5184
− 49

72
ζ(2) + 3ζ(2) ln 2 − 3

4
ζ(3)

]
(5)

where λ is the fictitious photon mass and the fourth-order coefficient has the numerical value

m2F
′(4)
1 (0) = 0.469 941 487 460. (6)
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Figure 2. Combined self-energy vacuum-polarization diagram (denoted ‘V ’ in the text).

According to equation (1.7) in [22], the value of F2(0), through two-loop order, reads

F2(0) = 1

2

α

π
+

(α
π

)2
[

197

144
+

1

2
ζ(2)− 3ζ(2) ln 2 +

3

4
ζ(3)

]
(7)

where the two-loop coefficient has the numerical value

F
(4)
2 (0) = −0.328 478 965 579. (8)

We now turn to the discussion of the slope F ′(4)
2 (0). In view of equation (1.20) of [22] (see

also [24]), we have (up to two-loop order)

F2(t) = α

π
F (2)

2 (t) +
(α
π

)2
[

ln
λ

m
B(t)F (2)

2 (t) + F (4)
2 (t)

]
(9)

where the coefficients F are by definition infrared safe and

F (2)
2 (0) = 1

2
B(t) = − t

3m2
− t2

20m2
+ O(t3). (10)

Equations (9) and (10) uniquely determine the infrared divergent contribution to F ′(4)
2 (0).

An analytic expression for F (4)
2 (t), t spacelike, has recently been obtained [25] in terms of

harmonic polylogarithms [26, 27]. As a byproduct, an analytic expression for the slope
F ′(4)

2 (0) was found.
The result reads

m2F
′(4)
2 (0) = −1

6
ln

(
λ

m

)
+m2F ′(4)

2 (0)

m2F ′(4)
2 (0) = 1751

2160 + 13
20ζ(2)− 23

10ζ(2) ln 2 + 23
40ζ(3).

(11)

A numerical result for F ′(4)
2 (0), complementing the above analytic expression, can easily be

derived in combining equations (1.20), (1.30) and (3.2) in [22], as will be explained in the
following. The dispersion relation (1.30) in [22] reads

ReF2(t) = − 4m2

t − 4m2
F2(0) +

1

π

t

t − 4m2
P

∫ ∞

4m2

dt ′

t ′ − t

t ′ − 4m2

t ′
ImF2(t

′) (12)
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where P denotes the Cauchy principal value. Equation (12) applies also if we single out
the two-loop effect and differentiate at zero momentum transfer, and we obtain for the slope
F

′(4)
2 (0) the relation

m2F
′(4)
2 (0) = 1

4
F
(4)
2 (0) +

1

4π
P

∫ ∞

4m2

dt ′
4m2 − t ′

t ′2
ImF

′(4)
2 (t ′) = 1

4
F
(4)
2 (0) + T (13)

where F (4)2 (0) is given in equation (8). The second term on the right-hand side, denoted by T ,
can be evaluated using the result for ImF

(4)
2 (x) presented in equation (3.2) in [22]; it reads

T = −
∫ 1

0
dx
(1 − x)3

x(1 + x)
ImF

(4)
2 (x) = −1

6
ln

(
λ

m

)
+ 0.030 740 507 833(1). (14)

Here, the last error is due to numerical integration, and use is made of the natural variable [22]

x = 1 −
√

1 − 4m2/t

1 +
√

1 − 4m2/t
. (15)

In combining the result of equation (8) with equations (13) and (14), the result m2F ′(4)
2 (0) =

−0.051 379 233 561(1) is obtained which is in agreement with (11).
Now we will provide results for the form factors obtained excluding the self-energy

vacuum-polarization graph V shown in figure 2. These results refer to the pure two-photon
self-energy diagrams shown in figure 1. The two-loop self-energy diagrams independently
form a gauge-invariant set. They represent a historically problematic correction, and are the
main subject of our investigation. The combined self-energy vacuum-polarization diagram,
according to equations (1.9) and (1.10) in [23]—taking into account the subtracted dispersion
relation (1.30) of [22]—leads to the following corrections:

F
′(4),V
1 (0) = − 1099

1296 + 77
144ζ(2) = 0.031 588 972 474

F
(4),V
2 (0) = 119

36 − 2ζ(2) = 0.015 687 421 859 (16)

F
′(4),V
2 (0) = 311

216 − 7
8ζ(2) = 0.000 497 506 323.

For the pure self-energy graphs, which we would like to denote by the symbol S, we therefore
obtain the following results:

m2F
′(4),S
1 (0) = − 47

576 − 175
144ζ(2) + 3ζ(2) ln 2 − 3

4ζ(3) = 0.438 352 514 986 (17)

F
(4),S
2 (0) = − 31

16 + 5
2ζ(2)− 3ζ(2) ln 2 + 3

4ζ(3) = −0.344 166 387 438 (18)

m2F
′(4),S
2 (0) = −1

6
ln

(
λ

m

)
− 151

240
+

61

40
ζ(2)− 23

10
ζ(2) ln 2 +

23

40
ζ(3)

= −1

6
ln

(
λ

m

)
− 0.051 876 739 885

≡ −1

6
ln

(
λ

m

)
+ F ′(4),S

2 (0). (19)

where the latter equality defines F ′(4),S
2 (0) in analogy with equations (9) and (11).
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3. High-energy part

Based on the modified Dirac Hamiltonian (3), corrections to the energy of the bound Dirac
particle can be inferred. We will refer to the energy corrections attributable to the F1 and F2

form factors as E1 and E2, respectively. For E1, we have

E1 = 〈[
F1(−q2)− 1

]
eφ

〉
fs (20)

where the index fs refers to the fine-structure terms, i.e. to the result obtained by subtracting
the value of the matrix element for a nP3/2 state from the value of the same matrix element
evaluated on a nP1/2 state. A matrix element 〈A〉fs of a given operator A is evaluated as

〈A〉fs ≡ 〈ψ+
nP3/2

|A|ψnP3/2〉 − 〈ψ+
nP1/2

|A|ψnP1/2〉
whereψ+ denotes the Hermitian conjugate of the Dirac wavefunctionψ (not the Dirac adjoint
ψ̄ = ψ+γ 0). The Dirac wavefunctions ψ are expanded in powers of (Zα) up to the order
relevant for the current investigation. This expansion avoids potential problems associated
with the logarithmic divergence of the Dirac wavefunction at the origin.

For E1, up to the order of (Zα)6, we have

E1 = 4πZαF ′(4)
1 (0)

〈
δ(3)(r)

〉
fs . (21)

For P states, the nonrelativistic (Schrödinger) wavefunction—the leading term in the Zα-
expansion of the Dirac wavefunction—vanishes at r = 0, but the first relativistic correction
gives a finite contribution, resulting in〈

δ(3)(r)
〉
fs = −n

2 − 1

4n5
(Zα)5m3. (22)

This leads, again up to the order of (Zα)6, to the following result for E1:

E1 =
(α
π

)2 (Zα)6

n3

[
−F ′(4)

1 (0)
n2 − 1

n2

]
m3. (23)

Observe that the derivative of the F1 form factor has a physical dimension of 1/m2 in natural
units, giving the correct physical dimension for E1. The correction due to F2 in (3) reads

E2 =
〈
F2(−q2)

e

2m
iγ · E

〉
fs
. (24)

A particle in an external binding Coulomb field feels an electric field E = i(Ze)q/q2—in
momentum space—or E = −(Ze)r/(4πr3) in coordinate space. Vacuum polarization
corrections to E = −(Ze)r/(4πr3) lead to higher order effects. The correction E2 splits up
in a natural way into two contributions E2a and E2b which are associated with F2(0) and the
slope F ′

2(0), respectively. E2a reads

E2a = Zα

2m
F
(4)
2 (0)

〈
−i

γ · r
r3

〉
fs
. (25)

The evaluation of the matrix element leads to〈
−i

γ · r
r3

〉
fs

=
{
(Zα)3

n3
+

[
487

360
+

5

4n
− 23

10n2

]
(Zα)5

n3

}
m2. (26)

For the purpose of the current investigation, the (Zα)6-component of E2a is selected only:

E2a =
(α
π

)2 (Zα)6

n3

[
F
(4)
2 (0)

(
487

720
+

5

8n
− 23

20n2

)]
m. (27)

The matrix element E2b can be expressed as

E2b = 4πZα

2m
F

′(4)
2 (0)〈γ · q〉fs. (28)
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A transformation into coordinate space leads to

〈γ · q〉fs = i

[
∂

∂x
(ψ+(x)γψ(x))

]
x=0,fs

= −n
2 − 1

n5
(Zα)5m4. (29)

As a function of the principal quantum number n, the result for E2b reads as follows:

E2b =
(α
π

)2 (Zα)6

n3

[
−2F ′(4)

2 (0)
n2 − 1

n2

]
m3. (30)

This result involves the infrared divergent slope of the F2 form factor (see equations (11) and
(19)). We are thus faced with the problem of matching the infrared divergence of the slope of
the F2 form factor, expressed in terms of the fictitious photon mass λ, with the usual (energy
matching parameter) ε introduced originally in [8]. This can be done in two ways: (i) by
matching the infrared divergence of the rate of soft bremsstrahlung, calculated with a fictitious
photon mass λ, to a result of the same calculation, carried out with an explicit infrared cut-off
ε for the photon energy. This way of calculation is described in [17, pp 361–2]. It leads to the
result

ln
λ

2ε
= −5

6
. (31)

The matching procedure (ii) consists of a comparison of the result of the application of the
formalism considered above, and its application to the high-energy part of the ground state
Lamb shift, which is in leading order given by the infrared divergence of theF1 form factor, and
the result obtained by direct calculation of this high-energy part in a non-covariant formalism
with an explicit energy cut-off ε, as it has been carried out in [8]. This second matching
procedure leads to the following result, in agreement with (31):

ln
m

λ
− 3

8
= ln

m

2ε
+

11

24
. (32)

So, we are led to the replacement

−ln
λ

m
→ ln

m

2ε
+

5

6
(33)

A comparison with the results in equations (11), (19) and (36) reveals that the logarithmic
divergence for the fine-structure difference is given by a term

− n2 − 1

3n2
ln
m

2ε
(34)

so that we may anticipate at this stage the result for �fsB61

�fsB61 = −n
2 − 1

3n2
. (35)

Based on (30) and (33), we can express E2b in terms of ε and F ′(4)
2 (0)

E2b =
(α
π

)2 (Zα)6

n3

[
−1

3

n2 − 1

n2
ln
m

2ε
−

(
5

18
+ 2F ′(4)

2 (0)m2

)
n2 − 1

n2

]
m. (36)

There is a third correction due to the effect of two one-loop corrections on the electron
vertices. Because we are only interested in the fine structure, we isolate the terms which are
proportional to the spin–orbit coupling, and obtain

E3 =
〈
[2F2(0)]Hfs

(
1

E −H

)′
[2F2(0)]Hfs

〉
fs

(37)
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where

Hfs = Zα

4m2r3
σ · L (38)

and 1/(E−H)′ is the nonrelativistic, spin-independent reduced Schrödinger–Coulomb Green
function [28, 29]. The only spin-dependence in (37) occurs in the coupling σ · L, and it can
be taken into account by an overall factor

〈(σ · L)2〉fs = −3. (39)

We are therefore led to consider the ‘spin-independent version’ of the matrix element which
occurs in equation (37) and obtain the following result:〈

Zα

4m2r3

(
1

E −H

)′
Zα

4m2r3

〉
nP

=
(

− 227

8640
− 1

96n
+

1

80n2

)
(Zα)6m

n3
. (40)

The spin-dependence can be easily restored by considering equation (39). The index ‘nP’
in equation (40) means that the matrix element is evaluated with the nonrelativistic, spin-
independent (Schrödinger) wavefunction. Alternatively, one may evaluate with either the
nP1/2 or the nP3/2 Dirac wavefunction and expand up to the leading order in (Zα).

The evaluation of (40) can proceed, e.g. by solving the differential equation which defines
the correction to the wavefunction induced by Hfs, and subsequent direct evaluation of the
resulting standard integrals using computer algebra [10]. The final result for E3 reads

E3 =
(α
π

)2 (Zα)6

n3

[
227

2880
+

1

32n
− 3

80n2

]
m. (41)

This concludes the discussion of the high-energy part. The final result for the high-energy
part is

EH = E1 + E2a + E2b + E3 (42)

where E1, E2a, E2b, E3 are given in equations (23), (27), (36), (41), respectively.

4. Low-energy part

The low-energy part consists essentially of two contributions. Both effects, denoted here
by E4 and E5, can be obtained by a suitable variation of the low-energy part of the one-
loop self-energy, by considering the spin-dependent effects introduced by a further one-loop
electron anomalous magnetic moment interaction. The first of the two terms, E4, is caused
by spin-dependent higher order effects in the one-loop self-energy, which receive additional
corrections due to the anomalous magnetic moment of the electron. The second term, E5, is
due to an anomalous magnetic moment correction to the electron transition current, which can
also be seen as a correction to the radiation field of the electron due to its anomalous magnetic
moment.

The leading-order low-energy part (see [8]) reads

EL = − 2α

3πm

∫ ε

0
dωω

〈
φ

∣∣∣∣p 1

H − (E − ω)
p

∣∣∣∣φ
〉
. (43)

In order to isolate the fine-structure effects, we should now consider corrections to the
wavefunction, current, Hamiltonian and energy of the bound state due to the spin-dependent
relativistic (spin–orbit) Hamiltonian

H = F2(0)
e

2m
iγ · E = α(Zα)

4πm

−iγ · r

r3
. (44)
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The above Hamiltonian H is the last term in the modified Dirac Hamiltonian (right-hand side
of equation (3)), approximated for a particle bound in a Coulomb field with the F2 form factor
evaluated at zero momentum. The electric field E in (44) corresponds to the binding Coulomb
interaction. The Hamiltonian (44) describes the modification of the spin–orbit interaction due
to the anomalous magnetic moment of the electron.

The nonrelativistic limit of H is the spin–orbit coupling Hfs given in equation (38),
multiplied by a factor 2F (2)2 (0) = α/π (the additional factor 2 finds an explanation in [30]).
The resulting Hamiltonian

Heff = α

π
Hfs = α

π

Zα

4m2r3
σ · L (45)

takes into account magnetic vertex corrections in the framework of an effective theory.
Denoting the variation of the expression (43) mediated by Heff with the symbol δeff , in
the spirit of the notation introduced in [13], we obtain the contribution

E4a = δeff

{
− 2α

3πm

∫ ε

0
dωω

〈
φ

∣∣∣∣p 1

H − (E − ω)
p

∣∣∣∣φ
〉}
. (46)

Following the notation introduced in [11, 12], the contribution E4a is the sum of the fine-
structure effects created by the wavefunction-correctionFδφ , the first relativistic correction to
the energy FδE , and the correction due to the relativistic Hamiltonian FδH , each multiplied by
a factor α/π . That is to say, the final result for E4 is

E4a =
(α
π

)2
(Zα)4

m

n3
(�fsFδφ +�fsFδE +�fsFδH ). (47)

There is a further correction to the nonrelativistic effective coupling to the radiation field
due to the ‘anomalous spin–orbit Hamiltonian’ (44). The correction, in the nonrelativistic
limit, can be derived by considering a Foldy–Wouthuysen transformation which by definition
diagonalizes the Hamiltonian (44) in spinor space and also leads to a transformation of the
relativistic current operator αi according to

αi → UαiU−1 U = exp

(
−i
βH
2m

)
. (48)

Here, β and αi are standard Dirac matrices [17], i is a spatial index, and H is given in (44).
The calculation is carried out along the ideas introduced in [11] and leads to the result

δj4b = α

π

Zα

2mr3
σ × r (49)

as a relativistic correction to the electron current which is simply αi in the relativistic
formalism and pi/m in the leading nonrelativistic approximation. Again, following the
notation introduced in [11, 12], the resulting additional contribution is

E4b =
(α
π

)2
(Zα)4

m

n3
�fsFδy . (50)

The sum of (47) and (50) is just the (Zα)6-component of the fine-structure difference of the
one-loop self-energy from [11, 12], multiplied by an additional factor α/π . It can also be
written as

E4 = E4a + E4b =
(α
π

)2 (Zα)6m

n3

[
−n

2 − 1

3n2
ln

2ε

(Zα)2m
+
n2 − 1

n2
�fs04(n)

]
(51)

where �fs04(n) could be interpreted as a relativistic generalization of a Bethe logarithm,
which is n-dependent. However, a significant numerical fraction of the n-dependence can be
eliminated if the factor (n2 − 1)/n2 is taken out of the final result. The evaluation of�fs04(n)
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has recently been performed in [31] with improved numerical methods (see e.g. [32]), and the
following results have been obtained:

�fs04(2) = 0.512 559 768(1)

�fs04(3) = 0.511 978 815(1)
(52)

�fs04(4) = 0.516 095 539(1)

�fs04(5) = 0.519 976 941(1)

where the uncertainty is due to numerical integration.
There is, as stated above, a further correction due to the explicit modification of the

transition current due to the anomalous magnetic moment; it can be obtained through the
replacement

αi → αi + F2(0)
iβσ iν

2m
qν (53)

and must be considered in addition to the correction (48). A careful consideration of the
nonrelativistic limit of this correction to the current, including retardation effects, leads to the
result

δj5 = α

2π

Zα

2mr3
σ × r. (54)

Consequently, we find that the correction is effectively F2(0) times the retardation corrections
to the transition current Fδy found in [11, 12]. We obtain

E5 =
(α
π

)2
(Zα)4

m

n3

�fsFδy

2
. (55)

In analogy with E4, this correction can favourably be rewritten as

E5 =
(α
π

)2 (Zα)6m

n3

[
n2 − 1

n2
�fs05(n)

]
. (56)

On the basis of [11, 12, 31], we obtain

�fs05(2) = −0.173 344 868(1)

�fs05(3) = −0.164 776 514(1)
(57)

�fs05(4) = −0.162 263 216(1)

�fs05(5) = −0.161 165 602(1).

The final result for the low-energy part is

EL = E4 + E5 (58)

with E4 and E5 being given in equations (51) and (56), respectively.
We can now understand why it was possible to join the two contributions with ‘mixed’

and ‘low-and-low’ energy virtual photons (ii) and (iii), which were discussed in section 1,
into a joint ‘low-energy part’. The reason is simple: the effective Hamiltonian (45) has no
infrared divergence, because it involves the low-energy limit of the magnetic form factor
F2, which is infrared safe in one-loop order according to equation (9). Because the main
contribution to the quantity F2 (0) is caused by hard virtual photons, it is also justified to say
that the contribution of ‘low-and-low’ energy virtual photons vanishes at the order of interest
for the current calculation (fine-structure difference). In higher-loop order, the further infrared
divergence acquired by F2 would lead to an infrared divergence in the effective Hamiltonian
constructed in analogy with equation (45); this infrared divergence would have to be attributed
to a ‘mixed’ contribution (one photon of high energy and one low-energy photon).
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5. Results and conclusions

We have obtained analytic results for higher order correction to the two-loop self-energy of
P states in hydrogen-like systems. In our calculation, we have analysed the electron form
factors through two-loop order in section 2, and we have split the calculation into a high-
energy part with two hard virtual photons discussed in section 3, and a low-energy part with
at least one soft virtual photon analysed in section 4. The final result for the contribution
to the fine-structure energy difference is obtained by adding the high-energy contributions
E1 − E3 given in equations (23), (27), (36), (41), and the low-energy effects E4 and E5 from
equations (51) and (56). The dependence on ε cancels out in the final result which is the
sum of the high-energy part EH given in equation (42) and the low-energy part EL defined in
equation (58). This is also evident when considering explicitly the equations (36) and (51).
The final results for the analytic coefficients of order α2(Zα)6 read

�fsB61 = −n
2 − 1

3n2
. (59)

(see also equation (35)) and

�fsB60 =
(

227

2880
+

1

32n
− 3

80n2

)
+ F (4),S2 (0)

(
487

720
+

5

8n
− 23

20n2

)

+
n2 − 1

n2

[
−

(
F

′(4),S
1 (0) + 2F ′(4),S

2 (0)
)
m2 − 5

18
+�fs04(n) +�fs05(n)

]
(60)

where explicit numerical results for F ′(4),S
1 (0), F (4),S2 (0) and F ′(4),S

2 (0) can be found in
equations (17), (18) and (19), respectively. This result refers to the pure self-energy diagrams
in figure 1. The result reads numerically for the principal quantum numbers n = 2–5,

�fsB60(2) = −0.361 196 470(1) (61)

�fsB60(3) = −0.411 156 068(1) (62)

�fsB60(4) = −0.419 926 624(1) (63)

�fsB60(5) = −0.419 832 876(1). (64)

If it is desired to add in the combined self-energy vacuum-polarization diagram from figure 2,
then the form-factor results from equations (6), (8) and (11) instead of the pure self-energy
results given in equations (17)–(19) have to be used in evaluating (60). When including the
combined self-energy vacuum-polarization diagram from figure 2, there is no further low-
energy contribution, so that the alternative set of numerical values for the form factors from
equations (6), (8) and (11) fully takes into account the additional effect of the diagram in
figure 1 on the fine structure in the order of α2(Zα)6.

It is perhaps worth mentioning that for the one-loop self-energy, analytic coefficients are
known only up to the order of α(Zα)6 [12], but the remaining uncertainty is removed by
recent nonperturbative numerical calculations [9, 31, 33]. For the two-loop effect, the (Zα)-
expansion converges more rapidly than for the one-loop effect in absolute frequency units
because of the additional radiative factor α/π which decreases the overall size of the effect.

It is hoped that the analytic calculations for low nuclear charge number Z will be
supplemented in the future by an accurate numerical treatment of the two-loop self-energy
problem (see also related recent work in the high-Z region [34–36]). This presupposes that
the considerable numerical problems in the domain of small nuclear charge could be solved
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by adequate numerical methods, and that the further problem of the increased computational
demand of the two-loop effect in comparison to the one-loop problem [9, 33] can be tackled—
possibly by massively parallel computer architectures. Note, however, that the most accurate
theoretical predictions could only be reached by combining the numerical and analytic results.
The reason is the following: all numerical calculations are performed in the non-recoil limit
which is the limit of infinite nuclear mass. This is not quite sufficient for an accurate theoretical
treatment because the self-energy effect for a bound state depends genuinely on the ratio of the
orbiting particle to the nuclear mass—an effect beyond the recoil correction. For example, the
argument of the logarithms in (1) should be replaced according to ln[(Zα)−2] → ln[σ(Zα)−2],
where σ = m/mr and mr is the reduced mass [3]. The possibility of including these tiny,
but important effects depends crucially on a reliable knowledge of the analytic coefficients in
combination with an accurate numerical treatment of the problem.

The analytic results can be used to obtain improved theoretical predictions for the
hydrogenic fine structure compared to the previous order-α7 calculations [11, 12], because
they remove the principal theoretical uncertainty in the order of α8 due to the problematic
two-loop self-energy which is represented diagrammatically in figure 1. A compilation of
the other corrections relevant at the order of α8, including but not limited to the vacuum
polarization effects, whose evaluation is rather straightforward, will be presented elsewhere.
Our calculation illustrates the usefulness of the simplified effective treatments of two-loop
effects in the analytic approach based on the modified Dirac Hamiltonian (3) and the ‘ε
method’ (see [8, 11, 12, 19] and appendix A). This aspect highlights, as we believe, the need
for systematic, simplified treatments of higher order radiative corrections in bound systems.

In this paper, we primarily address spin-dependent effects in one-electron (hydrogen-like)
systems. However, the same effects also contribute to the fine-structure splitting in
two-electron (heliumlike) systems. There is currently remarkable interest in improved
measurements of the fine-structure splitting in helium and heliumlike atomic systems with
low nuclear charge [37]. The effects addressed in this paper contribute to the fine-structure
splitting in helium at the level of 100 Hz, which is not much smaller than the current
experimental accuracy of about 1 kHz, and allows for an estimate of uncalculated yet higher
order contributions.

The results of this paper are a step in a systematic study of the higher order binding
corrections to the two-loop Lamb shift of S and P states. The scheme of calculation permits
not only a simplified treatment of the problem via a separation into appropriate energy regions
for the two virtual photons, but also a clear identification of the spin-independent and spin-
dependent contributions to the self-energy. The results will therefore be directly applicable
to the total coefficients for P states once the spin-independent parts (the two-loop Bethe
logarithms) are calculated. These are currently under study.
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Appendix A. The ‘ε method’

We discuss here, by way of example, the ε method employed in the analytic calculation of
self-energy effects in bound systems. This method is very suitable [11, 12] for the separation
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of the two different energy scales for virtual photons: the nonrelativistic domain, in which the
virtual photon assumes values of the order of the atomic binding energy, and the relativistic
domain, in which the virtual photon assumes values of the order of the electron rest mass.
Different approximation schemes and different asymptotic expansions are adequate for the
two different domains. Without these approximations and expansions, the analytic evaluation
of either the high- or low-energy part would not be feasible. At the same time, the model
example discussed in this appendix is meant to illustrate the usefulness of the ‘ε method’ in a
more general context.

We will consider here a model problem with only one ‘virtual photon’. The separation
into high- and low-energy photons necessitates the temporary introduction of a parameter ε;
the dependence on ε cancels when the high- and low-energy parts are added together. We have

nonrelativistic domain � ε � electron rest mass (A.1)
(Zα)2me � ε � me (A.2)

where α is the fine structure constant and Z is the nuclear charge. The high-energy part is
associated with photon energiesω > ε and low-energy part is associated with photon energies
ω < ε.

In order to illustrate the procedure, we discuss a simple, one-dimensional example: the
evaluation of

I (β) =
∫ 1

0

√
ω2 + β2

1 − ω2
dω. (A.3)

where the integration variable ω might be interpreted as the ‘energy’ of a ‘virtual photon’.
The integral I can be expressed in terms of special functions,

I (β) = βE

(
− 1

β2

)
= β

π

2
2F1

(
−1

2
,

1

2
; 1; − 1

β2

)
(A.4)

where E is the complete elliptic integral of the second kind, and 2F1 denotes a hypergeometric
function. An alternative integral representation reads I (β) = ∫ π/2

0

√
β2 + sin2(ω) dω.

The purpose of the calculation is to derive a semi-analytic expansion of I (β) in powers
of β and ln β. The fine structure constant α takes the role of the expansion parameter β in
actual self-energy calculations. We discuss first the ‘high-energy part’ of the calculation. It is
given by the expression

IH(β) =
∫ 1

ε

√
ω2 + β2

1 − ω2
dω. (A.5)

For ω > ε, we may expand√
ω2 + β2 = ω +

β2

2ω
+
β4

8ω3
+ O(β6) (A.6)

but this expansion is not applicable in higher orders to the domain 0 < ω < ε because of the
appearance of inverse powers of ω (analogous to an ‘infrared divergence’ in QED).

The separation parameter ε acts an infrared regulator. After expanding in β (see
equation (A.6)), the resulting integrals in each order of β can be evaluated analytically.
Subsequently, we expand every term in the β-expansion in powers of ε up to the order ε0, i.e.
we keep only the divergent and constant terms in ε. The result is

IH(β, ε) = 1 + β2

{
1

2
ln

(
2

ε

)
+ O(ε)

}
+ β4

{
− 1

16ε2
− 1

16
ln

(
2

ε

)
+

1

32
+ O(ε)

}

+ β6

{
1

64ε4
+

1

64ε2
+

3

128
ln

(
2

ε

)
− 7

512
+ O(ε)

}
+ O(β8). (A.7)
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Here, the ‘O’-symbol identifies a contribution for which O(x)/x → const as x → 0, whereas
the ‘o’-symbol identifies the weaker requirement o(x) → 0 as x → 0; this is consistent with
the standard notation (see e.g. [38]).

The contribution IH(β) corresponds to the ‘high-energy part’ in analytic self-energy
calculations, where the propagator of the bound electron is explicitly expanded in powers of
the fine structure constant α. Now we turn to the ‘low-energy part’. The expression for the
low-energy part (0 < ω < ε) reads

IL(β) =
∫ ε

0

√
ω2 + β2

1 − ω2
dω. (A.8)

The expansion (A.6) is not applicable in this energy domain; we therefore have to keep the
numerator of the integrand

√
ω2 + β2 in unexpanded form. However, we can expand the

denominator
√

1 − ω2 of the integrand in powers ofω; because 0 < ω < ε (with ε small), this
expansion in ω is in fact an expansion in β—although the situation is somewhat problematic
in the sense that every term in the ω-expansion gives rise to terms of arbitrarily high order in
the β-expansion (see also equation (A.10) below).

The term
√
ω2 + β2 is analogous to the Schrödinger–Coulomb propagator in the self-

energy calculation which has to be kept in unexpanded form, whereas the expansion

1√
1 − ω2

= 1 +
ω2

2
+

3

8
ω4 + O(ω6) (A.9)

corresponds to the expansion into the (Zα)-expansion in the low-energy part.
Every term in the expansion (A.9) gives rise to arbitrarily high order corrections in β,

but it starts with the power ωn → βn+2. For example, we have for the leading term of order
ω0 = 1 from equation (A.9)∫ ε

0

√
ω2 + β2 dω = β2

{
1

2
ln

(
2

β
ε

)
+

1

4
+ O(ε)

}
+ β4

{
1

16ε2
+ O(ε)

}

+ β6

{
− 1

64ε4
+ O(ε)

}
+ O(β8). (A.10)

Note that the terms generated in the orders β4 and β6 are needed to cancel divergent
contributions in respective orders of β from the high-energy part given in equation (A.6).
The term of order ω2 from (A.9) results in
1

2

∫ ε

0
ω2

√
ω2 + β2 dω = β4

{
− 1

16
ln

(
2

β
ε

)
+

1

64
+ O(ε)

}
+ β6

{
− 1

64ε2
+ O(ε)

}
+ O(β8).

(A.11)

Altogether, we obtain for the low-energy part,

IL(β, ε) = β2

{
1

2
ln

(
2

β
ε

)
+

1

4
+ O(ε)

}
+ β4

{
1

16ε2
− 1

16
ln

(
2

β
ε

)
+

1

64
+ O(ε)

}

+ β6

{
− 1

64ε4
− 1

64ε2
+

3

128
ln

(
2

β
ε

)
− 5

512
+ O(ε)

}
+ O(β8 ln β). (A.12)

When the high-energy (A.7) and low-energy parts (A.12) are added, the dependence on ε
cancels, and we have

I (β) = IH(β, ε) + IL(β, ε) = 1 + β2

{
1

2
ln

(
4

β

)
+

1

4

}
+ β4

{
− 1

16
ln

(
4

β

)
+

3

64

}

+ β6

{
3

128
ln

(
4

β

)
− 3

128

}
+ O(β8 ln β). (A.13)
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In order to illustrate the analogy with the self-energy calculation presented here, we would
like to point out that the dependence on ε cancels out in the final result which is the sum of
the high-energy part EH given in equation (42) and the low-energy part EL in equation (58).
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